Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
debakarr
GitHub Repository: debakarr/machinelearning
Path: blob/master/Part 3 - Classification/K Nearest Neighbors/[Python] K-Nearest Neighbour.ipynb
1009 views
Kernel: Python 3

K-Nearest Neighbour

Data preprocessing

# Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler %matplotlib inline plt.rcParams['figure.figsize'] = [14, 8]
# Importing the dataset dataset = pd.read_csv('Social_Network_Ads.csv') X = dataset.iloc[:, [2, 3]].values y = dataset.iloc[:, 4].values
dataset.head(10)
# Splitting the dataset into the Training set and Test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 42)
X_train[0:10]
array([[ 27, 57000], [ 46, 28000], [ 39, 134000], [ 44, 39000], [ 57, 26000], [ 32, 120000], [ 41, 52000], [ 48, 74000], [ 26, 86000], [ 22, 81000]])
X_test[0:10]
array([[ 46, 22000], [ 59, 88000], [ 28, 44000], [ 48, 96000], [ 29, 28000], [ 30, 62000], [ 47, 107000], [ 29, 83000], [ 40, 75000], [ 42, 65000]])
y_train[0:10]
array([0, 1, 1, 0, 1, 1, 0, 1, 0, 0])
y_test[0:10]
array([0, 1, 0, 1, 0, 0, 1, 0, 0, 0])
# Feature Scaling sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test)
X_train[0:10]
array([[-1.06675246, -0.38634438], [ 0.79753468, -1.22993871], [ 0.11069205, 1.853544 ], [ 0.60129393, -0.90995465], [ 1.87685881, -1.28811763], [-0.57615058, 1.44629156], [ 0.3069328 , -0.53179168], [ 0.99377543, 0.10817643], [-1.16487283, 0.45724994], [-1.55735433, 0.31180264]])
X_test[0:10]
array([[ 0.79753468, -1.40447546], [ 2.07309956, 0.51542886], [-0.96863208, -0.76450736], [ 0.99377543, 0.74814454], [-0.87051171, -1.22993871], [-0.77239133, -0.24089709], [ 0.89565505, 1.06812859], [-0.87051171, 0.36998156], [ 0.20881242, 0.13726589], [ 0.40505317, -0.15362871]])

Fitting classifier to the Training set

from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2) classifier.fit(X_train, y_train)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=5, p=2, weights='uniform')

Predicting the Test set results

y_pred = classifier.predict(X_test)
y_pred[0:10]
array([1, 1, 0, 1, 0, 0, 1, 0, 0, 0])
y_test[0:10]
array([0, 1, 0, 1, 0, 0, 1, 0, 0, 0])

Predictions are almost correct.


# Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) cm
array([[48, 4], [ 3, 25]])

That's awesome. Only 3 + 4 = 7, incorrect prediction and 64 + 29 = 93 correct prediction.


Visualising the Training set results

from matplotlib.colors import ListedColormap X_set, y_set = X_train, y_train X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j, edgecolors = 'white', linewidth = 0.7) plt.title('K-Nearest Neighbour Classifier (Training set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show()
Image in a Jupyter notebook

Visualising the Test set results

X_set, y_set = X_test, y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j, edgecolors = 'white', linewidth = 0.7) plt.title('K-Nearest Neighbour Classifier (Test set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show()
Image in a Jupyter notebook

Gist: K-NN is a non Linear Classifier. That's why it predicts so well in our decision making problem.